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Abstract
Marine sediments are one of the largest habitats on Earth, and their unique ecology, such as high salinity, high pressure, 
and hypoxia, may activate certain silent genes in marine microbes, resulting in microbes, enzymes, active products, and 
specific metabolic pathways that can adapt to these specific ecological environments. Marine sediment-derived microor-
ganisms and their bioactive metabolites are of great significance and have potential commercial development prospects for 
food, pharmaceutical, chemical industries, agriculture, environmental protection and human nutrition and health. In recent 
years, although there have been numerous scientific reports surrounding marine sediment-derived microorganisms and 
their bioactive metabolites, a comprehensive review of their research progress is lacking. This paper presents the develop-
ment and renewal of traditional culture-dependent and omics analysis techniques and their application to the screening of 
marine sediment-derived microorganisms producing bioactive substances. It also highlights recent research advances in 
the last five years surrounding the types, functional properties and potential applications of bioactive metabolites produced 
by marine sediment-derived microorganisms. These bioactive metabolites mainly include antibiotics, enzymes, enzyme 
inhibitors, sugars, proteins, peptides, and some other small molecule metabolites. In addition, the review ends with con-
cluding remarks on the challenges and future directions for marine sediment-derived microorganisms and their bioactive 
metabolites. The review report not only helps to deepen the understanding of marine sediment-derived microorganisms 
and their bioactive metabolites, but also provides some useful information for the exploitation and utilization of marine 
microbial resources and the mining of new compounds with potential functional properties.
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Introduction

Marine sediments are defined as deposits on the seafloor 
formed by various marine deposits, which make up more 
than 70% of the Earth’s surface. There are many ways to 
classify marine sediments. For example, according to the 
lithology, marine sediments can be classified as conglomer-
ate, sandstone, siltstone, and limestone (Tiwari and Mishra 
2007; Awramik and Buchheim 2009). Depending on the 
grain size, they can be classified as boulder, medium gravel, 
gravel, sandy gravel, very coarse sand, coarse sand, medium 
sand, fine sand, very fine sand, silt, and clay, respectively 
(Callesen et al. 2018; Hassaan and El Nemr 2021). Conven-
tional classification of marine sediments is based primarily 
on depth (Weltje and von Eynatten 2004). Generally, marine 
sediments may be divided into the following types: nearshore 
sediments, shallow marine sediments, semi-deep sea sedi-
ments, deep sea sediments, and other types (Li et al. 2021). 
The composition of marine sediments at different depths, 
including soil, gravel, biological debris, organic nutrients, 
minerals, salt concentrations, and certain compounds, is dif-
ferent (Hoshino et al. 2020), as shown in Fig. 1. Compared 
with land, the ocean has unique ecological characteristics 
such as high salinity, high pressure, low temperature, low 
oxygen, great variation of light intensity, and poor nutrition, 
which leads to the diversity of microbial species and meta-
bolic pathways (Kim 2019; Bolser et al. 2023). Marine sedi-
ment is one of the largest habitats on Earth (Hoshino and 
Inagaki 2019). However, our understanding of its microbial 
diversity and function is relatively limited.

Marine microorganisms refer to all organisms that use 
marine water as their normal living environment, and include 
prokaryotes, eukaryotes, and viruses (Suttle 2007). Studies 
have shown that the marine environment contains about 
3.6 × 1030 microorganisms (Egerton et al. 2018), while the 
total number of microbial cells in marine sediment is pres-
ently estimated as 2.9 × 1029 to 5.4 × 1029 cells, accounting 
for 0.18 to 3.6% of Earth’s total living biomass (Hoshino 
et al. 2020). Marine microorganisms have a dual identity as 
producers and decomposers, and can participate in the entire 
process of decomposition, synthesis, and transformation 
of marine substances (Mishra et al. 2022). They not only 
purify, regulate and repair the marine environment and eco-
system, but also play an important role in the development 
of food, agriculture, medicine, energy, and other industries 
(Doley et al. 2020; Ghosh et al. 2022). For example, a strain 
of Erythrobacter sp. SDW2 from seawater that produces 
lutein can be used as an industrial microbe candidate in the 
production of food, cosmetics, and pharmaceuticals (Jeong 
et al. 2022). Pseudomonas GWSMS-1 strain from Antarc-
tica, capable of producing cold-adapted chitinase, has been 
reported as a competitive candidate for biological control of 
plant pathogenic fungi (Liu et al. 2019). The collaboration 
of marine chitinase produced by deep-sea sediment-derived 
Bacillus haynesii with Mucor has also been reported to be 
effective in increasing bioethanol production (Govindaraj et 
al. 2023).

Marine microorganisms are often divided into cultur-
able and unculturable microorganisms (Wang et al. 2021). 
For the screening of cultured marine microorganisms, the 

Fig. 1  Major components of 
marine sediments at different 
depths
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traditional culture-dependent approach is mainly through 
the design of appropriate screening media and culture con-
ditions to obtain pure cultures (WagnerDöbler et al. 2002; 
Mu et al. 2021). Pure cultures are subsequently identified by 
physiological and biochemical characteristics and molecu-
lar biological conservative sequence methods. However, 
under standard laboratory conditions, more than 99% of 
marine microorganisms are uncultured, mainly due to a 
lack of information on the nutritional needs of uncultured 
microorganisms (Jiao et al. 2021). Traditional culture tech-
niques are difficult to study those microorganisms that can-
not grow in laboratory conditions, thus failing to reflect the 
abundance and scope of microbial diversity in nature, mak-
ing it difficult to fully exploit and utilize the vast treasure 
trove of marine microorganisms as well (Lewis et al. 2021). 
Metagenomics is a culture-independent approach that can 
largely avoid the isolation and culture of microorganisms 
in order to analyze their genetic information and screen 
for functional genes (Berini et al. 2017). This method may 
be one of the more suitable methods to solve the problem 
of utilizing undeveloped genetic resources of uncultured 
microorganisms (Chin et al. 2022). In recent years, with the 
improvement of bioinformatics database construction and 
continuous innovation of analytical methods, multi-omics 
integration techniques have been rapidly developed, such as 
metagenomics, metaproteomics, metatranscriptomics and 
metabolomics (Miao et al. 2021). The combined application 
of multi-omics can help discover new microorganisms from 
marine ecological environments and provide unprecedented 
opportunities for screening of marine microorganisms that 
produce active compounds (Palazzotto and Weber 2018). In 
addition, the integration of these techniques can also help 
to explore the community structure of microorganisms and 
assess the complex relationship between microorganisms 
and the marine environment (Marfil-Santana et al. 2021), 
which can deepen the understanding of marine life.

The ocean is not only an important resource for micro-
organisms, but also an excellent source of natural bioactive 
molecules, new compounds, secondary metabolites and 
enzymes (Ameen et al. 2021; Ghosh et al. 2022). However, 
the bioactive marine microorganisms found so far may only 
account for about 1% of marine microorganisms (Li et al. 
2021). This biological activity, which includes antibacte-
rial, anti-cancer, anti-diabetes, anti-blood pressure, anti-
inflammation, anti-virus, anti-oxidants and immunity (Song 
et al. 2021; Ghosh et al. 2022), has important implications 
for food, medicine and human nutrition and health. There-
fore, it is of great scientific research and potential com-
mercial application value to screen microorganisms with 
active components from marine sediments. In recent years, 
there have been endless reports on the production of bioac-
tive substances by microorganisms from marine sediments 

(Yang and Song 2018; Yurchenko et al. 2019; Han et al. 
2020; Kikukawa et al. 2021), as well as numerous reviews 
on specific marine bioactive compounds, mainly around the 
source and function of specific bioactive substances (Cunha 
and Pintado 2022; Liu et al. 2022). The purpose of this 
review is to collect up-to-date research information on the 
active substances produced by different microorganisms in 
marine sediments. It also presents a number of methods for 
screening microorganisms and their applications to screen-
ing marine-derived microorganisms. In addition, the types, 
functional properties and potential applications of bioac-
tive metabolites produced by marine-derived microorgan-
isms are highlighted. This review may provide some useful 
information for the development and utilization of marine 
sediment-derived microbial resources and the excavation of 
bioactive matrix with potential functional characteristics.

Screening and identification of marine 
sediment-derived microorganisms

Development and renewal of traditional culture 
techniques and modern bioinformatics techniques

The establishment and development of traditional culture 
techniques has allowed us to isolate a large number of dif-
ferent microorganisms from ecological environments, and 
these techniques have been fundamental and instrumental 
in basic and applied research in microbiology for over a 
hundred years. The general process of traditional micro-
bial culture is the design or simulation of suitable culture 
media and conditions for microbial growth, reproduction 
and metabolism based on the target organism or compound 
after sample acquisition. Then the pure culture (single strain 
and colony) obtained after separation and purification by 
various pretreatment strategies and techniques is analyzed 
and identified according to its structural, physiological and 
biochemical characteristics and conserved gene sequences 
(such as 16  S rRNA and ITS sequence) (Mohamed et al. 
2021; Wang et al. 2021). To rapidly screen and isolate tar-
get strains from different ecological environments, identify 
and obtain their metabolites, the culture technology has 
been continuously developed and improved. Combined 
with sample pre-processing and modern biological devices, 
it has been developed into a variety of new methods and 
means for the study of novel target microorganisms and 
their potential activities, such as in situ culture technol-
ogy and microfluidic droplet control technology (Wang et 
al. 2021; Imachi et al. 2022). An in situ cultivation device 
(the I-tip) has been used to cultivate microorganisms from 
Baikalian sponges (Jung et al. 2014). The I-tip method has 
produced cultures of 34 species from five major phyla, 
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et al. 2022). Compared with NGS technology, TGS based on 
single molecule real-time sequencing platform (for example, 
PacBio Sequel II platform, Pacific Biosciences Of Califor-
nia, Inc.) can extend the read length from hundreds of bases 
to thousands of bases, the maximum reading length is 20 kb, 
and the data of about 8 GB can be obtained after about 1 h 
of sequencing (Xiao and Zhou 2020; Athanasopoulou et 
al. 2022). Furthermore, innovative long-read technology 
makes genome sequencing a tractable procedure, reducing 
the average time of the library construction workflow and 
simplifying the ab-initio genome assembly process due to 
long reads (Athanasopoulou et al. 2022).

Although metagenomics has been intensively studied, it 
is difficult to give information on which microbial charac-
teristics are truly associated with phenotypes relying solely 
on metagenomics analyses (Liu et al. 2021). Therefore, 
integrated meta-genomics approaches (as shown in Fig. 2) 
are expected to investigate interactions between microor-
ganisms, between microorganisms and the environment, 
and between microorganisms and metabolites. Thousands 
of molecules in biological samples (DNA, RNA, proteins, 
and metabolites) can be measured simultaneously by using 
various combinatorial techniques for more efficient, rapid 
and accurate identification of microflora characteristics (Yu 
et al. 2019). It has been reported that the microbial meth-
ane oxidation at the sediment-water interface of a shallow 
marine methane seep has been studied by using metagenom-
ics and metaproteomics (Taubert et al. 2019). The results 

Actinobacteria, Alphaproteobacteria, Betaproteobacteria, 
Firmicutes, and Gammaproteobacteria. The analysis and 
screening of Phaeodactylum tricornutum and Nannochlo-
ropsis gaditana using droplet-based microfluidic methods 
allows for rapid discrimination between individual Phaeo-
dactylum tricornutum or Nannochloropsis gaditana cells 
engineered to express green fluorescent proteins from wild-
type cells (Yu et al. 2021). Although these methods have 
many limitations, they contribute to the exploitation and uti-
lization of the genetic resources of marine microbes to a cer-
tain extent, and they also provide a powerful means for the 
study of genetic diversity in the ocean (Imachi et al. 2022).

Due to the specificity of the growing environment, most 
marine microorganisms could be uncultured in the labora-
tory (Jiao et al. 2021; Mohamed et al. 2021). Advances in 
gene sequencing and bioinformatics have enabled humans 
to quickly sequence marine sediment samples (not just to 
identify specific genes) to study changes in metagenomic 
function and metabolism (Acinas et al. 2021), which avoids 
the limitation that many microorganisms may not be cul-
tured in standard laboratories. This also makes it possible to 
study the microbial community structure and specific func-
tional microbial strains in extreme marine environments. 
In recent years, gene sequencing technology has developed 
from the first generation (Sanger sequencing) to the second 
generation (Next-generation sequencing, NGS), and then 
to the latest third generation (Third-generation sequencing, 
TGS) (van Dijk et al. 2018; Hu et al. 2021; Athanasopoulou 

Fig. 2  The overall framework, technical process, function and application of multi-omics methods
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isolate 1S1 has been identified as strain Streptomyces sp.S1. 
Evaluation and analysis of its antibacterial potential and 
ethyl acetate extract suggest that the strain has the ability 
to produce a variety of antibacterial compounds (Mothana 
et al. 2022). Some marine microorganisms have special 
growth conditions, and are difficult to isolate and culture 
in the laboratory (Wang et al. 2021). Researchers usually 
need to find a suitable culture medium and design optimal 
growth conditions, or simulate a marine ecological environ-
ment suitable for the growth, reproduction, and metabolism 
of the target strain as far as possible to achieve the purpose 
of enriching microorganisms. For example, to obtain bioac-
tive sulfate-enriched marine anaerobic bacteria, an anoxic 
enrichment medium containing mineral brackish marine 
media with sulfated polysaccharides as a substrate has been 
designed, and anoxic Black Sea sediment from a depth of 
2100 m has been incubated continuously for several weeks 
to obtain microbial colonies (van Vliet et al. 2019). Com-
munity analysis using 16 S rRNA gene amplicon sequenc-
ing has shown that Kiritimatiellaeota clade R76-B128 can 
be enriched in the concentrated solution with the sulfated 
polysaccharides fucoidan and iota-carrageenan as sub-
strates. The results of sulfate esterase studies on two of these 
strains, F1 and F21, imply that they are the most abundant 
microorganisms encoding sulfate esterases available. The 
use of certain pre-processing techniques to enrich the target 
microbe before strain isolation can effectively increase the 
separation efficiency of the microbe (Mohamed et al. 2021; 
Mu et al. 2021). A total of 290 actinomycetes strains have 
been collected from 14 sediment samples from the Oman 
Sea using different media and heat treatments (Mohamed et 
al. 2021). The results of 16 S rRNA gene sequencing sug-
gest that three of the strains may be Streptomyces djakarten-
sis, Streptomyces olivaceus, and Nocardiopsis dassonvillei. 
The results of activity tests on ethyl acetate extracts from all 
strains suggest the widespread distribution of the antioxi-
dant and cytotoxic compounds produced by Actinobacteria 
in the Oman Sea sediments.

Culture-independent metagenomics can provide a new 
perspective on uncultivated marine microorganisms by 
cloning and analyzing microbial DNA directly from envi-
ronmental samples to address the central question of the 
production potential of bioactive substances. Using metage-
nomic sequencing of antibiotic resistance genes from 12 
coastal sediment samples covering the urban coastline of 
Kuwait, 20 common resistance genes have been identi-
fied, ranging from 402 genes to 34 drug classes. 46% of 
the genes are from the phylum Proteobacteria (Habibi et al. 
2022). Metagenomics can be used not only to discover these 
potentially functional genes, but also to explore differences 
in the community structure, function and metabolism of 
complex microorganisms in marine sediments (Gong et al. 

have indicated that various members of the gammaproteo-
bacterial family Methylococcaceae are the key players in 
methane oxidation. In complex ecosystems, metagenomic 
techniques reveal functional potential (Aguiar-Pulido et al. 
2016; Yu et al. 2019). For example, metagenomics has been 
used to analyze the potential metabolic capacity of micro-
bial communities in deep sediments in the southern Gulf of 
Mexico (Torres-Beltran et al. 2021). It has been shown that 
the metabolic cores of prokaryotic communities exhibit dif-
ferent functional signatures between the continental slope 
and abyssal plain. Metatranscriptomics and metabonom-
ics can reveal active genes and metabolic responses to 
specific physiological processes. Metatranscriptomics has 
been used to explore microbial polyphosphate utilization 
in marine sediments (Jones et al. 2016). The results have 
shown that sulfur oxidizing microorganisms preferentially 
express polyphosphate degradation genes in anoxic condi-
tions. Non-targeted metabonomics has been used to reveal 
the metabolic response of Bacillus to cyclotetramethylene-
trinitramine stress (Yang et al. 2021a, b, c). The results have 
shown that the main differentially expressed metabolites 
during cyclotetramethylene-trinitramine stress are lipids 
and lipid-like molecules, and that the most significantly 
affected metabolic pathway is purine metabolism. Meta-
proteomics aims to study the composition and differential 
expression of proteins in cells. A novel gene encoding for 
a lipolytic enzyme has been identified using a functional 
metaproteomics approach and successfully expressed in 
Escherichia coli (E. coli) (Sukul et al. 2018). Currently, 
even though the ability to report comprehensive analyses of 
microorganisms in marine sediments using integrated meta-
omics techniques is still limited (Yu et al. 2019), these new 
techniques have become indispensable tools for scientists 
to explore marine microbial resources and functional active 
components.

Screening and identification of marine sediment-
derived microorganisms using dependent-culture 
and modern bioinformatics techniques

In recent years, interest in terrestrial microbial resources has 
gradually declined, while more researchers have focused 
on the exploitation of marine microbial resources, particu-
larly those from marine sediments. Traditional isolation and 
culture technology is a common tool for screening marine 
microorganisms, which provides the basic conditions for the 
discovery of novel marine microorganisms and functional 
structural compounds. Using traditional culture and isola-
tion techniques, 13 strains of marine bacteria have been 
isolated from 25 sediment and water samples taken from 
a shallow area off the west coast of Yemen. Based on mor-
phology, biochemistry, and 16 S rRNA gene sequence, the 

1 3

Page 5 of 25  172



World Journal of Microbiology and Biotechnology (2023) 39:172

binding to methyl coenzyme M reductase, a key enzyme 
in methanogenesis or anaerobic oxidation of methane, has 
been found in the genome of ANaerobic MEthane oxidiz-
ing archaea group 1, the dominant microorganism in the 
sample. Of course, mutli-omics techniques highlight a lot 
of interesting information about uncultured marine microor-
ganisms, but independent culture methods are also needed to 
confirm potential activities. These techniques have become 
an effective tool for scientists to explore marine microbial 
resources and functionally active components.

Production of bioactive metabolites by 
marine sediment-derived microorganisms

The diversity of marine environments not only determines 
biological diversity, but also produces many types of com-
pounds with novel chemical structures and remarkable 
physiological activity. The diversity of these compounds 
may far exceed that of terrestrial organisms (Dayanidhi 
et al. 2021). Studies have shown that the biosynthesis of 
natural products by these marine microorganisms depends 
on a variety of biological and abiotic factors in the marine 
environment, including temperature, nutrients, salinity, and 
their interactions with other microorganisms (Gozari et al. 
2021). Marine bioactive substances are a broad category 
that includes not only antibiotics, sugars, proteins, peptides, 
amino acids, but also pigments, alkaloids, terpenes, sapo-
nins, and polyketones (Cunha and Pintado 2022; Ghosh et 
al. 2022). Some marine sediment-derived microorganisms 
and their bioactive metabolites, functions, and potential 
applications are shown in Fig.  3. The study of bioactive 
metabolites produced by marine sediment-derived microor-
ganisms is of great significance both in theory and in the 
maintenance of human health.

Production of antibiotics as potential drugs

Antibiotics are generally considered to be substances pro-
duced by microbial metabolism that can inhibit the growth 
and reproduction of pathogenic microorganisms (or cancer 
cells) at very low concentrations. According to their chemi-
cal properties and structure, they can be divided into qui-
nolones, β-lactams, macrolides, aminoglycosides, and other 
antibiotics (Ozumchelouei et al. 2020). According to their 
different functions, antibiotics can also be divided into anti-
bacterial, antifungal, antiviral, and anti-tumor (Aminov 
2009). In recent years, although most of the clinically avail-
able antibiotics come from terrestrial Streptomyces, as many 
infectious diseases become resistant to traditional antibiot-
ics, the input and output rate of terrestrial antibiotics con-
tinues to decline, as well as the continuous development of 

2019; Parvathi et al. 2020). Comparing the taxonomic struc-
ture and genetic profiles of mangrove and non-mangrove 
sediment samples, Proteobacteria, Bacteroidetes, and Fir-
micutes are the most abundant bacterial phyla (Zhao et al. 
2019b). Archaeal family Methanosarcinaceae and bacterial 
genera Vibrio and Dehalococcoides are significantly higher 
in the mangrove sediments than in the nonmangrove sedi-
ments. Functional analysis has shown that “Carbohydrate 
metabolism” is the most abundant metabolic category. The 
significant difference in carbohydrate metabolism between 
mangrove sediments and non-mangrove sediments is attrib-
uted to the higher contents of polyphenol oxidase, hexos-
yltransferase, and β-N-acetylhexosaminidase in mangrove 
sediments. Metagenomics can be used not only to explore 
the ecological structure and metabolic processes of complex 
microbial communities, but also as an indispensable method 
to rapidly mine the genes encoding bioactive metabolites in 
metagenomes. It provides a tool for the screening of uncul-
tured microorganisms from marine sediment sources and 
the discovery of novel bioactive metabolites.

The emergence of multi-omics technique has acceler-
ated the development of quantitative and high-throughput 
research. With the continuous proposal, development and 
updating of this technology, people have a deeper and 
clearer understanding of the structural and functional char-
acteristics of microbial communities in marine sediments 
and their internal and external metabolism and synthesis 
mechanisms. Previous studies have reported the use of 
amplicon sequencing combined with in-depth metage-
nomics to study the composition and function of microbial 
communities in sediments collected from different marine 
environments (Zhang et al. 2022b). The results have shown 
that microbial communities in seamount sediments are 
more abundant and diverse than those in the cold seeps and 
marine trenches sediments. Acinetobacter dominates the 
cold seeps sediments and is replaced by Halomonas and 
Pseudomonas in seamount and marine trench sediments. 
Results from the exploration of microbial communities 
in the oligotrophic northern Indian Ocean using an inte-
grated meta-omics-based approach suggest that metabolic 
regulation is an important mechanism for maintaining the 
stability of microbial communities dominated by Prochlo-
rococcus, Synechococcus, and SAR11 (Xie et al. 2022). In 
addition, multi-omics techniques can quickly identify not 
only genetic materials in marine sediments, but also new 
bioactive substances with specific functions. A metagenome 
and metatranscriptome-based integrated approach has been 
used to identify small RNAs in the microbiome of Guaymas 
Basin sediments (Nawaz and Wang 2022). The results show 
that 82% of the sRNAs are highly similar to the previously 
known sRNA in the Rfam database, and “18%” are putative 
novel sRNA motifs. A putative cis-acting sRNA potentially 
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2018), for the development of novel marine drugs is one of 
the important directions in the exploitation of marine sedi-
ment microbial resources in recent years. Some informa-
tion on antibiotic production by marine sediment-derived 
microorganisms is given in Table 1. Structural formula of 
antibiotics with potential functional properties are shown 
in Fig. 4. It has been reported that 28 strains of actinomy-
cetes have been isolated from sediments ranging from 98 
to 2974 m deep in the South China Sea, of which 4 strains 
have anti-Mycobacterium phlei activity and 5 strains have 

marine biotechnology and other reasons, many scientists and 
explorers turn their attention to the ocean to discover novel 
antibiotics (Durand et al. 2019). On the one hand, features 
of resource sustainability and abundant species of marine 
microorganisms may provide rich species or matrix materi-
als for new drug discovery. On the other hand, the discovery 
of new marine antibiotics may overcome the dependence of 
human health on terrestrial antibiotics (Zhang et al. 2021a).

Screening of marine sediment-derived microorganisms 
producing antibiotics, especially actinomycetes (Qu et al. 

Fig. 3  Types, functions and potential applications of bioactive compounds produced by marine sediment-derived microorganisms
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Specific microorganisms Source Bioactive compoundsa Bioactivity Reference
Streptomyces sp. OPMA00071 Oki-

nawan 
marine 
sediments

JBIR-1501 Cytotoxicity (Kawahara 
et al. 2018)

Salinispora sp. NHF45, Nocardiopsis sp. NHF48, 
and Streptomyces sp. NHF86

South 
China sea 
sediments

Rifamycin B2, an analogue of paulomenol3 and 
α-pyrone compound4

Antibacterial (Yang 
and Song 
2018)

Streptomyces fradiae VITMK2 Marine 
soil sedi-
ments of 
Picha-
varam, 
Tamil 
Nadu, 
India

9(10 H)-Acridanone5 Antiviral (Manima-
ran et al. 
2018)

Streptomyces chartreusis/ cacaoi/sampsonii/qinglan
ensis/diastaticus

Northern 
Oman 
Sea 
sediments

Ethyl acetate culture extracts Antibacterial 
and antitumor

(Gozari et 
al. 2019)

Streptomyces monashensis sp. MUSC 1JT Sarawak 
man-
grove 
soil

Fermentation broth extract Antican-
cer and 
antioxidant

(Law et al. 
2019)

Salininispora arenicola Marine 
Sedi-
ments 
of St. 
Peter and 
St. Paul 
Archi-
pelago, 
Brazil

Salinaphthoquinones A-E6–10 Antibacterial (da Silva et 
al. 2019a; 
Silva et al. 
2019b)

Streptomyces sp. ZS-A45 Marine 
sedi-
ments of 
Zhoushan 
Island

Nitricquinomycins A-C11–13 Antibacterial (Zhou et 
al. 2019)

Bingchenggensis ULS14 Lagos 
Lagoon 
sediment

ULDF 4 and 514,15 Anticancer (Davies-
Bolorun-
duro et al. 
2019)

Streptomyces sp. RKND004 Prince 
Edward 
Island 
Sediment

Terrosamycins A and B16,17 Antibacterial 
and anticancer

(Sproule et 
al. 2019)

Streptomyces sp. RMS518F Sedi-
ments of 
the Red 
Sea in 
Sharm 
el-Sheikh

Viscosine18 Antibacterial 
and anticancer

(Selim et 
al. 2019)

Streptomyces sp. EG1 Sedi-
ments 
from the 
northern 
Mediter-
ranean 
coast of 
Egypt

Mersaquinone19 Antibacterial (Kim et al. 
2020)

Table 1  Antibiotics produced by marine sediment-derived microorganisms and their biological activities reported in recent five years
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Specific microorganisms Source Bioactive compoundsa Bioactivity Reference
Streptomyces griseorubens DSD069 Philip-

pine 
marine 
sediments

Bisanhydroaklavinone20 and 
1-Hydroxybisanhydroaklavinone21

Anticancer (Paderog et 
al. 2020)

Streptomyces sp. Shell-016 Shell 
sedi-
ments in 
Binzhou 
shell dike 
island 
and 
Wetland 
National 
Nature 
Reserve, 
China

Shellmycin A-D22–25 Anticancer (Han et al. 
2020)

Streptomyces xinghaiensis SCSIO S15077 The 
South 
China 
Sea 
sediment

Tunicamycin26 Antibacterial (Zhang et 
al. 2020)

Streptomyces sp. DSD011 Marine 
sedi-
ments in 
near the 
coast of 
Islas de 
Gigantes, 
Iloilo

Fridamycin A and D27,28 Antibacterial (Sabido et 
al. 2020)

Verrucosispora maris AB-18-032 Sedi-
ments 
from the 
Sea of 
Japan

Abyssomicin C29 Antibacterial (Fiedler 
2021)

Pseudoalteromonas xiamenensis STKMTI.2 Man-
grove 
sedi-
ments of 
Setokok 
Island, 
Indonesia

Ethyl acetate extracts Anti-vibrio (Handay-
ani et al. 
2022)

Streptomyces sp. EG32 Sedi-
ments 
of the 
northern 
coast of 
Mediter-
ranean 
Sea, 
Egypt

Chlororesistoflavins A and B30,31 Antibacterial (Kim et al. 
2022)

Actinoalloteichus cyanogriseus 12A22 Sedi-
ments of 
the South 
China 
Sea

Cyclo-(L-Pro-D-Pro-L-Tyr-L-Tyr)32 and 
2-hydroxyethyl-3-methyl-1,4-naphthoquinone33

Antibacterial 
and antitumor

(Zhang et 
al. 2021b)

Table 1  (continued) 
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may have some degree of cell-selective inhibition, but fur-
ther analysis of the composition of the ethyl acetate extracts 
is needed. In addition, it can also be studied from the aspects 
of intracellular and extracellular structural characterization, 
cellular metabolic processes, and pharmacokinetic model 
design to clarify the mechanism by which these extracts 
inhibit cell selectivity and screen more potential drugs or 
novel compounds.

Streptomyces, as soil saprophytes and common antibiotic-
producing bacteria (Yang et al. 2020), have been reported 
to have antibiotic biosynthesis gene clusters (Romano et al. 
2018). A new tetracene derivative has been isolated from 
marine-derived Streptomyces organic matter in the search 
for a new antibiotic against methicillin-resistant Staphy-
lococcus aureus. This derivative has antibacterial activity 
against methicillin-resistant Staphylococcus aureus, and its 
minimum inhibitory concentration is 3.36 µg/mL (Kim et al. 

anti-methicillin-resistant Staphylococcus aureus activity 
(Yang and Song 2018). Through 10  L scale fermentation 
experiment, a new bioactive α-pyranone compound has 
been determined. These new substances offer the possibility 
of discovering new drugs. Another study has reported that 
172 strains from marine sediments at depths of 42 to 3763 m 
in the Arctic Ocean have been isolated, one of which has 
been identified as Bacillus ZJ318 based on 16  S rRNA 
sequencing analysis (Zhang et al. 2022a). The ethyl acetate 
extract of this strain has been shown to have a strong inhibi-
tory effect on Staphylococcus aureus, and subsequently a 
known macromolecular lactide has been obtained by chro-
matographic separation and HPLC purification. Ethyl ace-
tate culture extracts of actinomycetes isolated from marine 
sediments in other regions have also been shown to be toxic 
to some tumor cells, but not to normal cells (Gozari et al. 
2019). These studies suggest that these ethyl acetate extracts 

Specific microorganisms Source Bioactive compoundsa Bioactivity Reference
Streptomyces sp. KMM 9044 Marine 

sediment 
in the 
north-
western 
part of 
the Sea 
of Japan

Streptocinnamides A and B34,35 Antibacterial (Makarieva 
et al. 2022)

Aspergillus sp. YQ-13 Sediment 
Kueis-
hantao 
hydro-
thermal 
vents off 
Taiwan

3-hydroxy-2-(2-hydroxy-6-methoxy-4-
methylbenzoyl)-5-methoxy-benzoic acid 
methyl ester36

Antioxidant (Tao et al. 
2018)

Aspergillus flocculosus Viet-
namese 
marine 
sediment

Drimane sesquiterpenoid derivatives 7 and 
837,38

Anticancer 
and neuropro-
tection

(Yurch-
enko et al. 
2019)

Phomopsis tersa FS441 Deep-sea 
sediments

Phomeroids A and B39,40 Anticancer (Chen et 
al. 2020)

Aspergillus niveoglaucus Viet-
namese 
marine 
sediment

Niveoglaucins A and B41,42 Neuroprotec-
tion

(Yurch-
enko et al. 
2020)

Gallaecimonas mangrovi HK-28 Man-
grove 
sedi-
ments 
from 
Hainan 
province, 
China

Gallaecimonamides A-C43–45 Antibacterial (Ding et al. 
2020)

Bacillus sp. ZJ318 Arctic 
Ocean 
marine 
sediments

Macrolactin J46 Antibacterial (Zhang et 
al. 2022a)

aThe numbers in this column represent the number of compounds, and the structural formula of the numbered compound corresponds to Fig. 4

Table 1  (continued) 
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from marine sediment-derived fungi in Vietnam. Some of 
these metabolites may be cytotoxic to prostate cancer cells, 
breast cancer cells, and neuroblasts (Yurchenko et al. 2019). 
In addition to the aforementioned microorganisms, since 
the first isolation of antibiotic-producing marine microor-
ganisms, Pseudomonas, Micrococcus, Bacillus, and many 
undetermined new bacteria have been reported to be capable 
of producing a wide variety of antibiotics and their deriva-
tives (Jose and Jha 2017; Guo et al. 2022). These special 
microorganisms have been found to be of great practical 
significance for the excavation of new antibiotics and the 
treatment of drug-resistant infectious diseases. Currently, 
most studies use traditional culture-dependent and 16  S 
rRNA sequence analysis to obtain target microorganisms, 
which are then combined with NMR, MS, HPLC and other 
chromatographic separation techniques to obtain corre-
sponding novel compounds. These technologies provide 
some potential support for the development of novel drugs 
(Yurchenko et al. 2019; Han et al. 2020). It is believed that 
these new drugs will play a huge role in human health and 
disease treatment in the future.

Production of enzymes and enzyme inhibitors

Although a large number of enzymes have been recognized, 
these enzymes are often required to be stable under harsh 

2020). Streptomyces griseus is a species of Streptomyces. A 
crude extract of Streptomyces griseus isolated from marine 
sediments has also been shown to have high antibacterial 
activity against Staphylococcus aureus, and these antibiotic 
compounds have been identified as two anticancer anthra-
cycline derivatives (Paderog et al. 2020). Similarly, Strepto-
myces sp. shell-016 isolated from shell sediments collected 
from Binzhou Shell Dike Island and Wetland National 
Nature Reserve in China can also produce new anticancer 
compounds (Han et al. 2020). After isolation and purifica-
tion of these substances by HPLC, their toxic effects on five 
cancer cell lines have been confirmed. The IC50 values of 
their toxic effects on cancer cells ranged from 0.69 to 26.3 
µM.

Fungi can also produce certain antibacterial substances. 
For example, the fungus Trichoderma sp. JWM29-10-1 has 
been isolated from hydrothermal vent sediments on in Guis-
han Island, Taiwan, and five new polyketones and seven 
known compounds have been identified by spectroscopic 
analysis (Lai et al. 2022). Two new polyketones have shown 
not only strong antibacterial activity against Helicobacter 
pylori, but also significant inhibitory effects on the growth 
of gram-positive pathogens, including methicillin-resistant 
Staphylococcus aureus, Enterococcus faecalis, and vanco-
mycin-resistant Enterococcus faecalis. Similarly, four new 
compounds and five known metabolites have been isolated 

Fig. 4  Molecular structural formulae of novel compounds produced 
by marine sediment-derived microorganisms as potential antibiotics. 
The different numbers are consistent with the number labels of bioac-

tive compounds in Tables 1, which represent different bioactive com-
pounds as potential antibiotics
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detergents, pharmaceuticals and other industries (Sun et al. 
2020). It has been reported that a heat-resistant serine prote-
ase (pF1AL2) has been screened from the genomic library 
of marine sediment microorganisms in the East China Sea 
(Sun et al. 2020). pF1AL2 has high stability under alkaline 
conditions, retaining more than 95% of its activity after 
24 h at pH 11.0. This enzyme can be placed at 70 °C for 
6 h and still maintain 80% activity, and has certain salt and 
acid resistance. Amylase is one of the most productive and 
widely used industrial enzymes, accounting for about 30% 
of the total sales of enzymes in the world (Paul et al. 2021). 
A gene encoding BmaN of the amylase from marine Bacil-
lus megaterium NL3 has been expressed in E.coli (Shofiyah 
et al. 2020). This alpha-amylase has been obtained and has a 
maximum activity at pH 6.0 and 60 °C with a specific activ-
ity of 28.7 U/mg.

Although enzymes can be obtained from a variety of 
sources, including animals, plants, and microorganisms, the 
use of microorganisms to obtain the enzyme is one of the 
most common and desirable methods used in industry. Chi-
tinase produced by marine microorganisms can hydrolyz 
chitin to release β-N-acetyl-D-glucosamine and N-acetyl 
chitin oligosaccharides (Liu et al. 2019). Chitin is a major 
resource for the preparation of chitin oligosaccharides and 
chitosan oligosaccharides, which have applicable values in 
the fields of medicine, food, health care, and environmen-
tal protection (Guan et al. 2019). Chitin, which belongs to 
the class of renewable resources, is abundant in the marine 
environment. In order to improve the degradation efficiency 
of chitin, it is particularly important to find efficient chitin-
degrading bacteria and chitinase with higher activity from 
the marine environment. It has been reported that chitinase 
production in cold-adapted bacteria screened from the Mari-
time Antarctic has increased by a factor of 7.7 up to more 
than 330 U/L after optimizing culture conditions (Vasquez 
et al. 2021). Another study has reported the production 
of highly active chitinase by Pseudomonas from marine 
sediments on the Fildes Peninsula in Antarctica (Liu et al. 
2019). When applied to cotton and cucumber, it can effec-
tively suppress fungal-induced wilt disease and will play an 
important role in agricultural biocontrol.

Enzyme inhibitors are substances that specifically act on 
certain groups of enzymes, reducing their activity or even 
completely disabling them, mainly from plants, microor-
ganisms and chemical synthesis. Some information on the 
enzyme inhibitors of marine microorganisms in the last five 
years is collected and showed in Table 3. In addition to the 
traditional screening and isolation of drug-derived bacteria, 
marine microorganisms and extreme microorganisms are 
new microbial groups among various enzyme inhibitors. 
Actinomycetes in marine sediments are the most common 
source of enzyme inhibitors (Imada 2005). Several new 

conditions such as high temperatures, extreme pH, high 
salt concentrations, and organic solvents (Gohel and Singh 
2018). Therefore, it is still an important and urgent task 
to find new enzymes with special properties from special 
environments. In recent years, studies on specific functional 
enzymes and microbial screening in special extreme marine 
sediments have been reported, such as esterase (Lu et al. 
2018), lipase (Verma et al. 2021), protease (Pessoa et al. 
2017; Sun et al. 2020), amylase (Goel et al. 2022), agarase 
(Leema Roseline and Sachindra 2018), chitinase (Vasquez 
et al. 2021), and others.

Marine sediments are not only a resource bank con-
taining huge biodiversity, but also a natural reserve for 
obtaining enzymes with potential for novel biocatalysts for 
biotechnology applications. Information on enzyme pro-
duction by microorganisms from marine sediments over the 
past 5 years is given in Table 2. It has been reported that a 
novel esterase (Est3-14) has been screened and identified 
from marine environmental genomic DNA libraries by con-
structing fosmid genomic library and screening genes on a 
large scale (Lu et al. 2018). After purification, the enzyme 
can be used to prepare free all-trans-astaxanthin in a bipha-
sic system, with a hydrolytic conversion ratio of up to 
99.3% (Lu et al. 2018). 3-Deoxy-D-arabino-heptulosonate-
7-phosphate synthase has been screened from a metage-
nomic library of subtropical marine mangrove sediments 
by a similar screening method, and has been successfully 
overexpressed in E. coli (Zhao et al. 2019a). The activity 
for the recombinant enzyme is the highest at pH 8.0 and 
40  °C (Zhao et al. 2019a). It is not uncommon to screen 
for enzymes with special functional properties from marine 
sediments (Lu et al. 2018; Zhao et al. 2019a). Due to their 
superior properties, these enzymes have potential applica-
tions in food, medicine, agriculture, detergents, dyes, envi-
ronmental protection and the chemical industry (Sun et al. 
2020; Ben Ayed et al. 2021; Edoamodu and Nwodo 2022; 
Wu et al. 2022).

The metabolic diversity of microorganisms allows them 
to survive in harsh environments, which may be related 
to their own ability to produce enzymes (Zhang and Kim 
2010). The Arctic bacterium Colwellia hornerae PAMC 
20,917 strain, isolated from the offshore sediment near 
Ny-Ålesund, Svalbard, can grow best on marine agar at 
10 °C due to the production of a cold-adapted and thermo-
labile alkaline phosphatase (Kim et al. 2018). Protease and 
amylase-producing microorganisms in extreme environ-
ments are often screened and widely used in many indus-
trial fields. Recent studies have reported that Colwellia sp. 
NB097-1, isolated from a marine sediment sample from the 
Bering Sea, can produce a cold-adapted protease (Zhang 
et al. 2018). Heat resistance of proteases is an important 
property that can be used in food processing products, 
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Table 2  Enzymes produced by marine sediment-derived microorganisms reported in the past five years
Source Specific 

microorganisms
Bioactive 
compounds

Function Potential Application Reference

Marine mud / Esterase Preparation of the free 
all-trans-Astaxanthin

Food (Lu et al. 
2018)

Marine sediments of Ezhara 
beach, Kannur, Kerala

Pseudomonas aeru-
ginosa KU1

Fibrinolytic 
enzyme

Fibrinolysis Biopharmaceutical 
industry

(Kumar et 
al. 2018b)

Marine sediments from the east 
coast of India

Acinetobacter sp. 
PS12B

Agarase Hydrolysis of seaweed 
and production of 
biofuels

Food and biofuels (Leema 
Roseline and 
Sachindra 
2018)

Marine sediment from the Fildes 
Peninsula, Antarctica

Pseudomonas 
GWSMS-1

Chitinase Biological control Agriculture (Liu et al. 
2019)

Black Sea sediments Kiritimatiellaeota 
strains F1 and F21

Sulfatase Removal of sul-
fate groups from 
polysaccharides

Food and medicine (van Vliet et 
al. 2019)

Marine sediments from the Gulf of 
Mannar biosphere reserve, Tamil 
Nadu

Nocardiopsis sp. Inulinase β-2,1 glycosidic bond 
of hydrolyzed inulin

Food (Neha et al. 
2022)

Marine sediment from the Bering 
Sea

Colwellia 
sp.NB097-1

Proteases Cold-adapted hydro-
lyzed protein

Molecular biology, 
meat tenderizing and 
detergent industry

(Zhang et al. 
2018)

Sediment of a hot spring in 
Indonesia

Bacillus sp. HT19 k-carrageenase Degradation of 
carrageenan

Plant protection (Li et al. 
2019)

Marine sediments of the Red Sea, 
Saudi Arabia

Bacillus velezensis Glutaminase-free 
L-asparaginase

Antitumor action Biopharmaceutical 
industry

(Mostafa et 
al. 2019)

Subtropical marine mangrove 
wetland sediments

/ 3-Deoxy-D-
arabino-heptu-
losonate-7-phos-
phate synthase

A key rate-limiting 
enzyme in aromatic 
amino acid anabolism

Production of aromatic 
amino acids

(Zhao et al. 
2019a)

Marine sediments of southern 
India

Virgibacillus sp. 
UR1

Urease Cycle urea to nitrogen Calcite precipitation 
and biocementation 
process

(Sarkar and 
Suthindhiran 
2020)

Marine sediments in the East 
China Sea

Anaerolineaceae 
bacterium

Serine protease High proteolytic 
activity

Detergent, pharmaceu-
tical, food

(Sun et al. 
2020)

Arabian Sea sediments Bacillus aryabhattai 
B8W22

Chitin deacetylase Chitin-degrading Biomedicine (Pawaskar et 
al. 2021)

Marine water sediments from 
Cove Rock and Bonza Bay beach 
of the Eastern Cape Province, 
South Africa

Enterobacter 
asburiae ES1 and 
Enterobacter
sp. Kamsi

Laccases Degrading- Bisphe-
nol A

Environmental protec-
tion, food, dye and 
chemical industry

(Edoamodu 
and Nwodo 
2022)

Marine sediment from the Kan-
niyakumari coast, Southern Tamil 
Nadu, India

Bacillus halodurans Protease Hydrolysis of protein Detergent (Balachan-
dran et al. 
2021)

Sediments from the
hot water of Genow

Bacillus subtilis 
strain HR02

Protease Hydrolysis of protein Detergents, agricul-
tural, textiles, paper, 
food and pharmaceuti-
cal industries

(Homaei 
and Qeshmi 
2022)

Offshore sediment near Ny-Ale-
sund, Svalbard

Colwellia hornerae 
PAMC 20,917

Alkaline 
phosphatases

Cold-active and ther-
molabile enzymes

Food, chemical synthe-
sis, and bioremediation

(Kim et al. 
2018)

Sediment and sponge samples 
from coastal sides of Turkey

Penicillium poloni-
cum MF82

Phytase Degradation 
of myoinositol 
hexakisphosphate

Food, environmental 
protection and pharma-
ceutical industries

(Kalkan et 
al. 2020)

Marine sediment from the East 
Sea near Korea

Paraglaciecola 
agarilytica NO2

Haloalkane 
dehalogenases

Catalytic halide 
hydrolysis

Biocatalysis, environ-
mental protection and 
biosensor

(Mazur et al. 
2021)

New Caledonian mangrove 
sediments

/ Peroxidases Dye-decolorizing Dye and textile 
industry

(Ben Ayed et 
al. 2021)

Black Sea marine sediment Streptomyces sp. 
K47

Alkaline proteases Degradation of various 
proteins

Therapeutic, cosmetic 
and food industry

(Corbaci and 
Ozcan 2021)

Sediments of mangrove wetlands 
in Qinzhou Bay, China

Aspergillus fumiga-
tus df347

Chitinase Preparation of chitin 
oligosaccharides

Food, medicine, agri-
culture and environ-
mental protection

(Wu et al. 
2022)

/ represents that no relevant information is involved in the reference
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enzyme inhibitors with great potential for industrial produc-
tion, but it is a complex and difficult process from labora-
tory screening to commercial application. A great deal of 
research and exploration is still needed. Large-scale devel-
opment and commercial production of marine microbial 
enzymes and enzyme inhibitors will be just around the cor-
ner as various advanced technologies continue to develop 
and countries focus on the research field of marine enzymes 
and enzyme inhibitors.

Production of potential bioactive sugars

Functional sugars are a class of carbohydrates with specific 
effects, including bioactive oligosaccharides, alditols, and 
polysaccharides (Abbasi et al. 2021). Due to their effects 
on human health, functional sugars are widely used in food, 
medicine, and human health, such as anticancer, antiviral, 
hypoglycemic, antioxidant, anticoagulant, and antibacterial 
(Casillo et al. 2018; Lin et al. 2019; Wang et al. 2020; Kuda 
et al. 2021). It is common to extract functional polysaccha-
rides from marine algae by some methods (Cui et al. 2018; 
Aullybux et al. 2019; Kuda et al. 2021; Wassie et al. 2021). 
However, studies have shown that microorganisms isolated 
from marine sediments can secrete polymers, which usu-
ally exist in the form of extracellular polysaccharides (Roca 
et al. 2016; Aullybux et al. 2022). In fact, marine bacteria, 
fungi and yeast can all produce extracellular polysaccharides 
(Dewapriya and Kim 2014). Marine bacteria are common 
microorganisms that produce bioactive polysaccharides, 
including Alteromonas, Halomonas, Pseudoaltermonas, 
Bacillus, Lactobacillus, and Polaribacter (Dewapriya and 
Kim 2014; Sahana and Rekha 2019). The extracellular 
polysaccharides secreted by them are the source of new bio-
active polysaccharides. A marine bacterium Alteromonas 
sp. PRIM-28, isolated from the Malpe region of the west 
coast of India, has been reported to produce extracellular 

acylated aminooligosaccharides and their homologues have 
been isolated from the marine-derived Streptomyces strains 
(Xu et al. 2020). The evaluation of their inhibitory activity 
on α-glucosidase and pancreatic lipase has been performed. 
The results suggest that D6-O-isobutyryl-acarviostatin II03 
and D6-O-acetyl-acarviostatin II03 of the two isolates have 
the most effective inhibitory effect on α-glucosidase and 
lipase. These studies have some potential applications in the 
development of multi-target antidiabetic drugs. Similarly, 
Nocardia actinomycetes SCA21 isolated from marine sedi-
ments can produce two active compounds, 4-bromophenol 
and Bis (2-ethylhexyl) phthalate, which have significant 
inhibitory activity on α-glucosidase, but phthalate ester has 
lower activity on α-amylase (Siddharth and Rai 2019).

Bacteria and fungi in marine sediments are also impor-
tant sources of enzyme inhibitors. A moderately salt-toler-
ant marine bacterium that may produce trypsin inhibitors 
from marine sediments was reported, and a protease inhibi-
tor, serine protease, was isolated and purified, which could 
be used as a potential anticoagulant (Harish and Uppuluri 
2018). It is speculated that the anticoagulant activity of this 
enzyme inhibitor may be due to the inhibition of clotting 
factors, but its anticoagulant mechanism needs to be dis-
cussed. Active compound inhibitors isolated from marine 
microorganisms may have significant inhibitory effects on 
microbial populations. Tyrosol isolated from marine-derived 
fungi can reduce the trypsin activity and proteolysis activity 
of other microorganisms to 57.8% and 9.9%, respectively, 
and inhibit the ability of microorganisms to produce certain 
secondary metabolites (Chang et al. 2019).

Screening microorganisms with special functional 
enzymes and enzyme inhibitors from marine sediments has 
been one of the important directions in the exploitation of 
marine resources. Characteristics of ecological environ-
ments and multi-functional catalytic activity make marine 
microorganisms capable of producing special enzymes and 

Table 3  Enzyme inhibitors produced by marine sediment-derived microorganisms reported in the past five years
Source Specific 

microorganisms
Bioactive compounds Function Potential 

Application
Reference

A deep-sea sludge in the South 
China Sea

Geosmithia pal-
lida FS140

Angiotensin-converting 
enzyme inhibitors

Inhibition of angioten-
sin-converting enzyme

Biomedical 
industry

(Sun et al. 
2018)

Marine sediments from the Arabian 
Sea

Oceanimonas sp. 
BPMS22

Protease inhibitors Anticoagulant activity Biomedical 
industry

(Harish and 
Uppuluri 2018)

Marine sediments from different 
locations of Havelock Island

Nocardiopsis sp. 
SCA21

4-bromophenol and Bis 
(2-ethylhexyl) phthalate

Inhibition of 
α-glucosidase and 
α-amylase

Biomedical 
industry

(Siddharth and 
Rai 2019)

Marine sediments from Yellow Sea, 
Shandong Province, China

Streptomyces sp. 
HO1518

Acylated 
Aminooligosaccharides

Inhibition of α-amylase Biomedical 
industry

(Liu et al. 
2018)

Marine sediment from the Rizhao 
coastal area, Shandong Province 
of Chin

Streptomyces sp. 
HO1518

D6-O- acetyl (or 
isobutyryl)-acarviostatin 
II03

Inhibition of 
α-glucosidase and lipase

Biomedical 
industry

(Xu et al. 
2020)

A sediment sample of Tokyo Bay Aspergillus sp. 
BFM-0085

Protuboxepin A and K Inhibition of Alkaline 
phosphatase

Biomedical 
industry

(Ohte et al. 
2020)
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2011). Common functional oligosaccharides from marine 
and marine microorganisms include chitosan oligosaccha-
rides (Kumar et al. 2018a), algal oligosaccharides (Jagtap 
and Manohar 2021; Xie and Cheong 2022), agar oligosac-
charides (Jiang et al. 2021), and carrageenan oligosaccha-
rides (Li et al. 2020). These biological activities include 
antioxidant, anti-tumor, anti-inflammatory, antibacterial, 
anticoagulant, and immunity boosting, and can be widely 
used in food, medicine, cosmetics, agricultural and aquatic 
products, and other fields (Zhu et al. 2021).

In recent years, with the protection of the marine eco-
logical environment and resources, it is no longer possible 
to meet the functional oligosaccharide demand simply by 
certain extraction, separation and purification methods, 
which require large ecological and labor costs to obtain 
the corresponding oligosaccharides from the ocean. To 
meet the demand for functional oligosaccharides, research-
ers are increasingly focusing on how to obtain functional 
oligosaccharides through special microorganisms or effi-
cient and specific enzymatic degradation. Bacteria from 
marine sediments are often used as the primary source of 
polysaccharide-degrading enzymes. A cold-adapted chi-
tinase (EaChi39) has been purified from Exiguobacterium 
antarcticum DW2 screened from the east coast of the Bohai 
Sea in China, capable of fully converting colloidal chitin 
into N-acetyl glucosamine and oligosaccharides (Fu et al. 
2020). This enzyme may be a good candidate for bioconver-
sion of seafood byproducts. Pseudoalteromonas carrageen-
ovora ASY5 screened from marine mangroves can produce 
ι-carrageenase that can degrade ι-carrageenan into disac-
charides and tetrasaccharides (Xiao et al. 2018). A novel 
polysaccharide lyase, AlgSH17, has been identified from 
the marine bacterium Microbulbifer sp. SH-1 isolated from 
coastal soil collected in Zhangzhou City, Fujian Province, 
China (Yang et al. 2021a). Oligosaccharides with degree of 
polymerization ≥ 4 can be degraded into disaccharides and 
trisaccharides by cleavage of internal glycosidic bonds, and 
disaccharides and trisaccharides can be further digested into 
monosaccharides by external dissolution.

Alginate lyases are the enzymes commonly used to 
degrade fucoidan, a series of alginate lyases with different 
product distributions have been obtained by screening spe-
cial microorganisms (Serratia marcescens NJ-07 and Vibrio 
sp. NJU-03) (Zhu et al. 2018a, b). The bifunctional alginate 
lyase FsAlgB can recognize tetrasaccharides as minimal 
substrates and cleave glycosidic bonds between subsites of 
-3 and + 1, which is very important for the production of 
alginate oligosaccharides (Zhu et al. 2019). In addition, the 
acquisition and characterization of some polysaccharide-
degrading enzymes is important for the agricultural, food, 
environmental protection, and pharmaceutical industries. 
For example, a thermostable κ-carrageenase isolated from 

polysaccharides with biological properties (Sahana and 
Rekha 2019). Its extracellular polysaccharide is a repeti-
tive unit composed of manuronic acid, glucose and N-ace-
tyl glucosamine repeating units in the ratio 1:3.67:0.93. It 
has the property of promoting cell proliferation and is a 
potential versatile bioactive polymer for wound care. The 
structure and function of extracellular active polysaccha-
rides from different marine microorganisms are diverse. A 
strain of Bacillus cereus isolated from the Saudi Red Sea 
coast can produce sulfate-free extracellular polysaccha-
rides, which is composed of glucose, galacturonic acid and 
arabinose with a molar ratio of 2.0:0.8:1.0, respectively, and 
has been proved to have antioxidant, anti-tumor, and anti-
inflammatory activities (Selim et al. 2022). It is not only 
marine bacteria that produce extracellular polysaccharides, 
but also marine fungi are thought to be promising produc-
ers of bioactive polysaccharides. Four fungal isolates have 
been obtained from marine sediments collected from the 
coast of El Max, Alexandria, Egypt (Amer et al. 2020). One 
of the strains providing the highest extracellular polysac-
charide production (4.98 g/L) has been identified as Asper-
gillus terreus based on 18 S rRNA gene sequence analysis. 
For the first time, the anticoagulant and cytotoxic activities 
of extracellular polysaccharides from the fungal Aspergil-
lus species have been determined. It is generally believed 
that microbial polysaccharides from marine sediments are 
popular among researchers because of their novel functions, 
safety, and stable chemical and physical properties.

Polysaccharides are also the main building blocks of pep-
tidoglycan and lipopolysaccharides, which make up the cell 
walls of most prokaryotes (Osibe et al. 2020). For micro-
organisms themselves, the functions of these extracellular 
polysaccharides include surface adhesion and colonization, 
protection of bacterial cells, and support for biochemi-
cal interactions between bacteria and their surroundings 
(Casillo et al. 2018). At the same time, due to the secre-
tion of microorganisms, polysaccharides occupy a certain 
position in marine components. With the growing interest 
in renewable resources, these extracellular polysaccharides 
have been used to develop some important biotechnology 
products, such as thickeners, stabilizers, and texture agents 
in the food industry, flocculants in the wastewater treatment 
industry, or anti-aging molecules in the cosmetics industry 
(Zikmanis et al. 2020). These extracellular polysaccharides 
are also used as conversion substrates for bioenergy and 
biomaterials, which can reduce economic dependence on 
fossil fuels (Pagliano et al. 2017).

Functional oligosaccharides are functional sugars that 
can improve human health to a certain extent. Most of them 
are low-level polysaccharides, which are connected by 2–10 
monosaccharides through glycosidic bonds to form straight-
chain or branched-chain polysaccharides (Patel and Goyal 
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Angiotensin-I-converting enzyme inhibitory peptides 
derived from marine organisms have been reported to have 
blood pressure lowering effects with no side effects (Feng 
et al. 2021). Antioxidant peptides isolated, identified, and 
characterized from snakehead soup after simulated gastro-
intestinal digestion suggest a higher antioxidant capacity 
for fractions with molecular weight less than 3 kDa (Zhang 
et al. 2021a, b, c). A multi-functional antimicrobial peptide 
(Epinecidin-1) produced by the orange-spotted grouper has 
been reported to have not only antibacterial, antifungal and 
antiviral effects, but also anticancer and immunomodula-
tory effects (Neshani et al. 2019). These bioactive peptides 
have potential applications in medicine, food and cosmetics 
industries due to their special functions (Cunha and Pintado 
2022). The main sources of bioactive peptides from marine 
organisms are seaweed, shellfish, and fish, which are mainly 
obtained by extraction. The most common method is to 
hydrolyze the raw material with enzymes found in bacteria 
or fungi, such as acid protease, trypsin, papain, and alka-
line protease, which hydrolyze large-molecule proteins into 
small-molecule active peptides (Cunha and Pintado 2022).

Peptides with different sources, structures, compositions, 
and sequences have different biological activities and fla-
vor characteristics. Most of the current research on marine 
peptides has focused on the extraction of marine organ-
isms. However, with the utilization and large-scale develop-
ment of marine resources, it is urgent to establish a friendly 
marine ecological environment. Therefore, bioactive pep-
tides obtained by screening marine-derived microorgan-
isms can effectively solve human dependence on marine 
non-renewable resources and enrich the sources of marine 
functional peptides (Johny and Suresh 2022). A strain of 
Bacillus velezensis FTL7 with strong ability to produce 
antimicrobial peptides has been isolated from marine sedi-
ment samples on the west coast of South India (Johny and 
Suresh 2022). The strain has shown antibacterial activity 
against a broad range of foodborne pathogenic bacteria such 
as Listeria monocytogenes Scott A, Bacillus cereus, Sal-
monella Typhimurium, Staphylococcus aureus, and Esch-
erichia coli. It has been reported that marine-derived fungi 
Aspergillus allahabadii and Aspergillus ochraceopetali-
formis have been isolated from marine sediments (Hwang 
et al. 2019). Four novel peptides have been isolated from 
these microorganisms after being cultured. By studying the 
effect of these new peptides on enzymes, it has been found 
that these new peptides can inhibit the enzymes sortase A 
(a kind of enzyme) and isocitrate lyase to a certain extent, 
which has potential application value in biomedical and 
chemical industries (Hwang et al. 2019). A marine strain of 
Aspergillus fumigatus BTMF9 isolated from marine sedi-
ment samples and terrestrial decayed samples has also been 
reported (Raghavan et al. 2021). An antimicrobial peptide 

sediment samples collected from hot springs on the island 
of Kalanda, Indonesia can degrade κ-carrageenan in vitro, 
enhance cucumber resistance to cucumber mosaic virus, 
and improve the activity of antioxidant enzymes in infected 
plants (Li et al. 2019). By characterizing a new α-neo-
agarose hydrolase, it has been found that the hydrolase can 
prepare medium-chain and long-chain agarose oligosaccha-
rides, which can be used as functional food additives (Jiang 
et al. 2020). In summary, the discovery and screening of 
polysaccharide-degrading bacteria or enzymes from marine 
sediments can not only effectively increase the yield of 
functional oligosaccharides and the efficiency of convert-
ing polysaccharides into more bioactive oligosaccharides, 
but also provide more resources for the development of new 
functional oligosaccharides.

Protein degradation and active peptide production

Clastic proteins and lipids exist widely in the marine envi-
ronment as biological macromolecules, in which clastic 
proteins are the largest component of marine organic matter 
(Liu 2022). These biological macromolecules can interact 
with and adsorb plastic particles (such as microplastics and 
nanoplastics) as marine pollutants (Liu et al. 2020). This 
interaction may affect the physical and chemical proper-
ties of plastics and macromolecules, including plastic tox-
icity, nutrient transport, and biological activity, which may 
have negative impacts on marine ecosystems and the cycle 
of organic compounds. In recent years, researchers have 
been actively searching for marine microorganisms that 
can degrade these biological macromolecules (Pelikan et 
al. 2021). Marine archaea may play a key role in protein 
remineralization in marine sediments (Yin et al. 2022). 
Meta-genomics has been used to analyze the archaea for 
the degradation of detrital proteins in different marine sedi-
ments. It has been found that three archaeal phyla (uncul-
tivated Thermoplasmata, SG8-5; Bathyarchaeota subgroup 
15; Lokiarchaeota subgroup 2c) actively perform protein 
catabolism. The characteristics, nutritional interactions and 
genomic characteristics of protein- and lipid-degradable bac-
teria in subarctic marine sediments have been analyzed by 
metagenomic technique. The results show that Psychriloyo-
bacter atlanticus is an important primary protein-degrading 
bacterium, and that Pseudomonas aeruginosa can degrade 
not only primary proteins but also primary lipids (Pelikan et 
al. 2021). These microorganisms play an important role in 
improving the marine environment and promoting the circu-
lation of marine compounds.

In recent years, there have been extensive studies on 
bioactive peptides, especially their functions, such as 
blood pressure lowering, antioxidation, antiviral, antibac-
terial, and cholesterol lowering (Akbarian et al. 2022). 
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2018). Recent studies have also reported that a kind of acti-
nomycetes, Salinospora arenicola, isolated from sediments 
of the St. Peter and St. Paul Archipelago, Brazil, can pro-
duce a variety of indole and pyruvate derivatives (Silva et 
al. 2019a, b).

In addition to alkaloids, pigment-producing microor-
ganisms isolated from marine sediments are also common. 
Fourteen strains have been reported from 180 sampling sites 
in pristine Andaman Islands, India (Ramesh et al. 2020b). 
Two red-pigmented strains, BSE6.1 and S2.1, have been 
identified for their active compounds. It has been found that 
hypocrellin is the dominant chemical component, and both 
strains exhibit potential multifaceted applications, such as 
antibacterial, antioxidant, food colorant, and staining prop-
erties (Ramesh et al. 2020b). Furthermore, whole genome 
and 16 S rRNA sequence analysis of strain S2.1 has shown 
that it is a new species of Zoosporidium (Ramesh et al. 
2020a). Bacteria are often thought to be the main microor-
ganisms responsible for producing lycopene. A new rose-red 
pigment-producing bacterium isolated from the cordgrass 
Spartina alterniflora sediments has been reported to pro-
duce both heptylprodigiosin and cycloheptylprodigiosin, 
which have dyeing and antibacterial activity (Huang et al. 
2020). Carotenoids, which are important natural pigments, 
is considered as one of the representative alkenes. Carot-
enoids have anti-oxidant, immunological, anti-aging, and 
anti-cancer effects, and are widely found in animals, plants, 
fungi, and algae (Delgado-Vargas et al. 2000). However, 
a recent study has shown that Saccharomyces cerevisiae 
screened from marine sediments can produce carotenoids, 
with a maximum total carotenoid concentration of 987 g/L 
at optimal culture conditions, which is potentially com-
mercially valuable (Zhao et al. 2019c). Similar reports 
have been made of a bacterium, Sphingomonas sp. SG73, 
isolated from deep-sea sediments collected in Suruga Bay, 
Shizuoka, Japan, which produces a polyhydroxyl yellow 
carotenoid (Kikukawa et al. 2021).

Polyketones are also the main bioactive polymeric com-
pounds derived from marine microorganisms, including 
macrolides, tetracyclines, anthracyclines, polyethers, and 
others. Polyketones are usually synthesized by polyketone 
synthase using small molecular carboxylic acids as precur-
sors, and their structures are complex. Many polyketones 
are often considered as antibiotics. Marine fungi are rich 
in polyketones, which account for about half of all novel 
structural compounds from all sources (Yang et al. 2021b). 
The deep-sea fungus Leptosphaeria sp. SCSIO 41,005 
can produce a variety of polyketones, such as isobenzo-
furanones and isoprenones (Luo et al. 2017). Some of the 
marine polyketones come from marine actinomycetes. It 
has been reported that seven kinds of pradiomycin polyk-
etones have been isolated from the dichloromethane extract 

under high temperature and extensive pH conditions has 
been obtained by ammonium sulfate precipitation and gel 
chromatography. The antimicrobial peptide is sensitive to 
proteolytic enzymes and is expected to become a novel anti-
infective drug with strong anti-biofilm potential (Raghavan 
et al. 2021).

Non-ribosomal peptide is one of the most common drugs 
in clinic, and one of its sources is marine-derived micro-
organisms. Recent studies have reported that the diversity 
of microorganisms and their non-ribosomal peptides and 
polyketone biosynthesis genes in marine sediments have 
been explored by metagenomics (Wei et al. 2018). Most 
of the bacteria in marine sediments are Proteus and Bac-
teroides. Actinomycetes producing non-ribosomal peptides 
and polyketones account for only 0.82% of all bacterial 
species. Most microbes are uncultured. In addition, the 
marine sediments may have the ability to synthesize new 
natural products and the distribution of non-ribosomal pep-
tide gene clusters in this environment is more than that of 
polyketone gene clusters. In a search for bacteria producing 
non-ribosomal peptides and genes encoding non-ribosomal 
peptide enzymes, the results of a multi-omics analysis of 
coastal sediments in the Yucatan have revealed that Proteo-
bacteria and Firmicutes are the phyla with the highest rep-
resentation of non-ribosomal peptide-producing organisms 
(Martinez-Nunez and Rodriguez-Escamilla 2020). Whole 
genome sequencing of a novel marine bacterium, Bacillus 
velezensis FTL7, which has an effective production capacity 
of antimicrobial peptides, has shown that genes responsible 
for the synthesis of non-ribosomal peptides and bacteriocins 
are present in the strain (Johny and Suresh 2022). It also 
suggests that Bacillus velezensis is already an excellent pro-
ducer of antimicrobial peptides.

Production of some small-molecule metabolites

Some compounds such as alkaloids, pigments, polyketones, 
and alkenes are common metabolites of microorganisms. 
Some of these small molecular metabolites are also consid-
ered as potential marine antibiotics because of their medic-
inal value. In recent years, as science has developed and 
marine resources have been continuously excavated, new 
microorganisms have been discovered from marine sedi-
ments. It has been reported that a new quinoline alkaloid 
and two new bisabolane-type sesquiterpene derivatives have 
been isolated from the deep-sea derived fungus Aspergillus 
sp. SCSIO06786 after culture on rice medium (Pang et al. 
2020). These compounds have a certain inhibitory effect 
on pathogenic bacteria. In addition, four new prenylated 
indole alkaloids and four new chromone derivatives have 
been obtained by culturing Penicillium sp. SCSIO041218, 
a fungus derived from mangrove sediments (Yang et al. 
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How to better tap the potential of the active substances 
produced by marine sediment-derived microorganisms is a 
challenge and task for every marine microorganism worker. 
In the future, directions for investigating marine sediment-
derived microorganisms and their bioactive metabolites 
are suggested as follows. The development of accurate and 
intelligent marine sediment sampling equipment can pro-
vide some guarantees for the collection of marine sediment 
in some special ecological environments. The screening 
space is further expanded to look for strains that produce 
novel or highly active bioactive substances. By using multi-
omics techniques and modern biotechnology to analyze the 
community structure, functional characteristics, and genetic 
evolution of microorganisms in different marine sediments, 
the functional genes of marine microorganisms and their 
specific functions can be found quickly and accurately, and 
thus the resource base and functional gene bank of marine 
sediment-derived microorganisms can be established. 
Combined with microbial culture-dependent techniques, 
the composition and conditions of the culture medium are 
reasonably designed. Using molecular biology techniques, 
marine sediment-derived microorganisms can be identi-
fied. Meanwhile, with the combination of genetic engineer-
ing, cell engineering and protein engineering, high yields 
of bioactive metabolites from marine microorganisms can 
be obtained by expressing functional genes associated with 
bioactive metabolites. The range of industrial applications 
of marine sediment-derived microorganisms and their bio-
active metabolites can be broadened by the use of sophis-
ticated separation, purification and identification devices 
to analyze the structure-function relationship of bioactive 
metabolites and further assess their safety and functionality.

At present, although there are many difficulties in the 
study of marine sediment-derived microorganisms and their 
bioactive metabolites, with the development and mutual 
penetration of biology, chemistry, physics, pharmacy, com-
puter and other related disciplines, as well as the coop-
eration of various advanced technologies and means, the 
development, production and application of marine sedi-
ment-derived microorganisms and their bioactive metabo-
lites can be promoted. Large-scale, industrial production of 
these bioactive compounds is just around the corner. In the 
future, marine sediment-derived microorganisms and their 
bioactive metabolites will make a greater contribution to 
humanity as they are better understood and studied.
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of Streptomyces CGMCC 4.7309 from marine sediments 
(Gao et al. 2018). The relationship between structure and 
antioxidant activity of these compounds has been subse-
quently studied. The results show that these compounds 
may be effective natural antioxidants with considerable 
medicinal value. At present, many small molecular metab-
olites from marine sources have not been discovered, and 
the biosynthesis mechanisms that produce small molecules 
with potentially functional properties from most marine 
sedimentary sources have not been elucidated. It is more 
challenging to explore the biological and pharmacological 
activities of new compounds and other secondary metabo-
lites from marine sources.

Conclusions

Marine sediment is an integral part of the marine ecosystem 
and is rich in microbial resources. The exploration of marine 
sediment-derived microorganisms not only helps to under-
stand the community structure and functional characteristics 
of microorganisms in marine ecosystems, but also to obtain 
many useful metabolites from microorganisms. These 
metabolites are widely used in food, medicine, agriculture, 
environmental protection and other industries. However, 
there are many challenges and problems associated with the 
study of marine sediment-derived microorganisms and their 
bioactive metabolites. First, while marine microorganisms 
are widely distributed in marine sediments, some micro-
organisms that produce bioactive metabolites with special 
functions may be present in marine sediments with special 
ecological environments. It is difficult to collect and obtain 
marine sediments in these special ecological environments, 
such as the deep sea, polar region, and hydrothermal zones. 
Second, microorganisms and their communities in marine 
sediments are diverse, and various microorganisms have 
different requirements for culture media and conditions. The 
growth and metabolic activity of microorganisms varies sig-
nificantly in different culture media and environments. As 
a result, the screening of marine sediment-derived micro-
organisms for the production of bioactive metabolites 
is largely blind and uncertain, and suffers from problems 
such as low screening efficiency and difficulty in culture of 
microorganisms. In addition, although the active materials 
obtained from marine sediment-derived microorganisms are 
novel in structure and unique in activity, their low yields 
make them difficult to isolate and identify. These issues 
limit the commercial use of active metabolites produced by 
marine sediment-derived microorganisms.

Marine sediments are one of the sources of novel micro-
organisms, in which many organisms with functional prop-
erties and bioactive metabolites have yet to be discovered. 
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