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ABSTRACT
Traditional fermented alcoholic beverages (TFABs) have gained widespread acceptance and enjoyed 
great popularity for centuries. COVID-19 pandemics lead to the surge in health demand for diet, 
thus TFABs once again attract increased focus for the health benefits. Though the production 
technology is quite mature, food companies and research institutions are looking for transformative 
innovation in TFABs to make healthy, nutritious offerings that give a competitive advantage in 
current beverage market. The implementation of intelligent platforms enables companies and 
researchers to gather, store and analyze data in a more convenient way. The development of data 
collection methods contributed to the big data environment of TFABs, providing a fresh perspective 
that helps brewers to observe and improve the production steps. Among data analytical tools, 
Artificial Intelligence (AI) is considered to be one of the most promising methodological approaches 
for big data analytics and decision-making of automated production, and machine learning (ML) 
is an important method to fulfill the goal. This review describes the development trends and 
challenges of TFABs in big data era and summarize the application of AI-based methods in TFABs. 
Finally, we provide perspectives on the potential research directions of new frontiers in application 
of AI approaches in the supply chain of TFABs.

Introduction

Traditional fermented alcoholic beverages (TFABs) is alco-
holic drinks originated from microbial metabolisms (bacte-
ria, yeasts, molds, etc.) that transform raw materials to 
ethanol and other metabolites (Cong, Hai, and Yan 2017; 
Wedajo Lemi 2020). Archaeologists found a dozen of pottery 
jars containing alcoholic drinks made from fruit, rice and 
honey that produced as early as 7000 BC in the Neolithic 
village of Jiahu (McGovern et  al. 2004), and evidence of 
winemaking in Iran and Egypt at 6000 BC and 3000 BC 
(Cavalieri et  al. 2003). With the innovation of productivity 
tools, the brewing technology was gradually perfected, form-
ing a complete of production process including material 
pre-processing, fermentation and maturation. The long his-
tory has seen the development of a wide variety of TFABs, 
including beer, wine, Kombucha and cider. Because of the 
distinctive flavors and high nutrition contents, TFABs have 
become an important part of people’s daily diet since ancient 
time. However, with the increase in food varieties and quan-
tities, this traditional food is no longer seen as a first choice 

for most consumers. Food enterprises and research institu-
tions are looking for transformative innovation in TFABs 
to make healthy, nutritious offerings that give a competitive 
advantage in the current beverage market.

In recent decades, consumers’ preference for healthier 
food has become the primary consumption driving forces 
in the beverage market. The health-promoting attributes 
of TFABs have already been recognized through previous 
studies (Marsh et  al. 2014). Roy et  al. discovered that wine 
consumption increases the α-diversity of gut microbiota, 
which is believed to be beneficial to human health (Le 
Roy et  al. 2020). Evidence also showed the antimicrobial 
and antioxidant properties of Kombucha (Costa et  al. 2021; 
Kapp and Sumner 2019). As the as the dangers of alcohol 
abuse have been widely recognized, non- or low-alcoholic 
beverages more match consumers’ health demands com-
paring to distilled liquor which is high in alcohol con-
tent, and TFABs seem to be the best choice that balance 
health and alcohol for both wine lover and health pursuer. 
COVID-19 pandemics have also created an opportunity 
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for TFABs (Antunes et  al. 2020; Nguyen et  al. 2020). New 
research has found that moderate wine drinking played 
protective effects against COVID-19, possibly the effect of 
polyphenols, while consumption of beer, cider and liquor 
increased the COVID-19 risk (Dai et  al. 2022). The powerful 
health benefits ensure long-term growth potential of TFABs 
in future beverage market.

A considerable effort has been made to improve the 
quality of TFABs in recent decades. However, traditional 
research methods on TFABs are inefficient, time-consuming 
and incomprehensive (Jian et  al. 2021). Fermented alcoholic 
beverages are complex solutions consist of thousands of 
different compounds. The sources of these compounds 
include raw material (mainly cereals and fruits), microbial 
metabolisms, environment and post fermentation process 
(chemical and physical reactions during aging). Any changes 
in the fermentation process may lead to entirely different 
products, which means numerous attempts and evaluations 
are needed to finally develop desirable products through 
traditional methods. The emergence of metagenomics and 
metabolomics provides more comprehensive microbial and 
metabolic profiles of traditional fermentation systems (Gao, 
Hou, et  al. 2021; Mannaa et  al. 2021; Tamang et  al. 2016). 
Though most of current research on TFABs is stilled limited 
in small datasets, the exponential increase in the amount 
of relevant data combined with newly-developed data mining 
methods will provide a new way to understand and improve 
the fermentation process comprehensively.

Artificial Intelligence (AI) is the study of applying com-
puter or computer-controlled robots to perform tasks by 
simulating thinking processes and intelligent behaviors of 
human beings. Machine learning (ML) is a key problem 
for AI, of which research has a profound influence on data 
mining (Blikstein and Worsley 2016), machine translation 

(Brynjolfsson, Hui, and Liu 2019), natural language pro-
cessing (Kantor 2001), voice and image recognition (Bishop 
2006; Gonzalez Viejo et  al. 2016). Computational modelling 
based on AI is a promising method to manage the data 
explosion of TFABs (Jian et  al. 2021; Figure 1). Existing sta-
tistical methods are usually applied to small datasets, which 
is not enough to reflect complex fermentation system and 
satisfy the ever-increasing demand of consumers (Chen et  al. 
2018). The implementation of intelligent platforms enables 
companies and researchers to gather, store and analyze large 
datasets in a more convenient way. Numerous studies have 
shown high efficiency and accuracy of AI-based methods 
in food industries with big data. AI has been gradually 
changing the production and marketing process of TFABs.

In this review, we focus on the research progress of 
AI-based methods in TFABs development. Application of 
AI-based methods on TFABs has been a hot research topic 
both in academy and industry, involving different kinds of 
TFABs like beer, wine and sake. Though a series of research 
papers have done, as far as we know, there is no systematic 
review on application of AI approach on TFABs. We further 
combined the characteristics of TFABs with the machine 
learning, artificial neural network, Internet of Things, syn-
thetic biology and big data and introduced the application 
of AI approaches in specific steps of supply chain of TFABs. 
Finally, we give a future prospect of the development and 
potential of AI approaches in practical application.

Industrialization of TFABs in big data era

Characteristics of traditional fermentation process

It is generally acknowledged that fermented foods originated 
from the imitation of natural fermentation. For the 

Figure 1. D ata-driven methods change development of TFABs.
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advantage of prolonging the storage time of grains and 
fruits, a considerable effort was made on technical and flavor 
improvement of traditional alcoholic fermented beverages 
for thousands of years (Figure 2). At the beginning, due to 
the lack of effective detection and analysis means, the brew-
ing techniques were established through long-term direct 
observation and experience accumulation by humans. Then 
the development of microbiology and biochemistry revealed 
the nature of fermentation, thus further improving the pro-
duction process. In recent decades, with the aid of bioin-
formatics and other high-throughput detection methods, the 
great potential was gradually realized by researchers and 
consumers.

Due to the increasing quantity demand for TFABs, tra-
ditional small-scale, household production systems are grad-
ually replaced with modernized, industrialized production 
chain (Chen et  al. 2018; Galimberti et  al. 2021; Katz 2003). 
Mechanized production can be considered a simplified vision 
of the traditional fermentation process (Figure 3), which 
has a larger production scale and faster fermentation speed 
but produces lower contents of flavor and functional com-
pounds. Three characteristics of traditional fermentation 
resulted to the quality differences in final products (take 
Huangjiu as an example) (Gui-Mei et  al. 2021; Yang et  al. 
2020). A thorough understanding of traditional fermentation 
helps to improve mechanized production techniques.

Production techniques
The production and aging processes for TFABs are quite 
complex. The traditional fermentation process for Huangjiu 
follows a one-year-cyclic pattern: producing wheat Qu in 
the eighth month of lunar calendar, fermenting from winter 
and frying wine in next year’s spring. Mechanized produc-
tion can be conducted in any time with a 30-day production 

cycle. Besides, the scale for traditional fermentation is about 
100 kilograms (raw material), while the scale for mechanized 
production is tens of tons (Xie et  al. 2020). The difference 
in production cycle and scale lead to the complex layered 
structure of manual Huangjiu.

Mixed fermentation
Most traditional production processes are mixed fermenta-
tion systems. Microorganisms from starter culture, raw mate-
rial and environment together dominate the fermentation 
process. The microbial interaction in the fermentation pro-
cess forms a complex enzyme system, which promotes the 
formation of flavor compounds and nutrient components 
(Ren, Du, and Xu 2017; Jin, Zhu, and Xu 2017; Xie et  al. 
2021). Because of the stricter controls of fermentation con-
ditions, there is less microbial resources for mechanized 
production, indicating low microbial diversity. Besides, the 
way of Qu-making also affects the formation of volatile 
flavor compounds. Compared with the Huangjiu brewed 
from mechanized wheat Qu, the Huangjiu brewed from 
handmade wheat Qu has stronger aroma and better taste 
(Peng et  al. 2022). The importance of fermented microor-
ganisms drives research on microbial structure (Hong et  al. 
2016; Cong, Hai, and Yan 2017), succession regulation and 
microbial interaction.

Experience-based sensory evaluation
Regularly monitoring of fermentation indexed is necessary 
to ensure the fermentation process to be carried out stably. 
Traditional production regulation mainly relies on human 
sensory perception to judge quality characteristics. Though 
the human assessors may be experienced wine tasters, the 
evaluation results can differ due to environmental factors 

Figure 2. D evelopment of TFABs.
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and psychological variability. It’s also time-consuming and 
strenuous to undertake enough manual assessment. Sensors 
in mechanized production line provide several fermentation 
indexes to help regulate production. However, existing mon-
itoring methods are not suitable for large-scale production. 
For most TFABs, especially high-end spirits, experience-based 
sensory evaluation is still the dominant evaluation method. 
Though a great deal of work has done on combining sensory 
evaluation with other fermentation indexes (Nicolotti, Mall, 
and Schieberle 2019; Dresel, Dunkel, and Hofmann 2015;  
Yu et  al. 2022), there is a lack of scientific data-driven 
method to evaluate the sensory properties of TFABs.

Challenges for development of TFABs in big data era

Big data emerged with three papers from Google, Google 
File System (GFS)(Ghemawat, Gobioff, and Leung 2003), 
MapReduce (Dean and Ghemawat 2008), and BigTable 
(Chang et  al. 2008). Then the open source of Hadoop drove 
the boom of big data industry. From then on, data tech-
nology was used in a wide range of fields, including TFABs. 
Digitalization, or digital transformation, refers to the pro-
cess of converting information into a digital form and adopt 
digital technology to help make decisions. With the devel-
opment of Internet and digital economy, digitization has 
become a general trend for TFAB industry to avoid others’ 
digital disruption. Last decade saw exciting changes in both 
amounts of data and the application of that data in TFAB 
industries. The continued evolution of data technology has 
led to impactful new technology and popular new products 
of TFABs. For the advantage of intelligent decision-making, 
it’s the top priority to transform into a data-driven business 

for most TFAB enterprise. Due to the limitations of tradi-
tional industries, many of the TFAB enterprises are strug-
gling with the digital transformation. The rapid advancement 
in digital transformation has brought with a range of chal-
lenges that will define the future trend of TFAB industry.

The challenges raised by big data are summed up as 
4Vs: volume, variety, veracity, and velocity (Lee and Yoon 
2017). The development of multi-omics methods (Mannaa 
et  al. 2021; Rizo et  al. 2020; Prakash et  al. 2013), sensor 
technology (Tan et  al. 2022), and human interface devices 
(Tonkin, Brimblecombe, and Wycherley 2017) lead to more 
available data of TFABs. However, too much data can be 
overwhelming, as only part of it works for specific 
decision-making. Though valuable information can be 
found in properly processed data, it’s not easily to manage 
raw data. For companies that have extensive data already 
collected, it is time-consuming for implementation team 
to rearrange the current data and make difficult choices. 
The rapid development of data acquisition methods also 
poses the problem of data management. The data to ana-
lyze comes from various sources in different formats. 
Meanwhile, large datasets are prone to error and miss, 
challenging for big data analytics. The enormous com-
plexity of data not only makes it hard for computers to 
understand data in different formats, but also increases 
the difficulties in establishment of databases. Raw data 
does not help to develop a new product or optimize exist-
ing techniques, which is a competitive requirement for 
leading enterprises to cope with. It’s of great importance 
to construct a reliable data mining framework to take full 
use of these data in further study (Dayioglu and Turker 
2021; Hassoun et  al. 2022).

Figure 3.  Production techniques for craft Huangjiu and mechanized Huangjiu.
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Applications of AI-based methods in TFABs

Data mining is the process that extracts implicit and poten-
tially useful information from data (Mahmud et  al. 2021; 
Salehan and Kim 2016). Big data and data mining are 
reshaping all areas of modern industry. Establishing a model 
from data through different algorithms is an important step 
in data mining process. AI-based methods are the typically 
used algorithm to create solutions in mined data. Comparing 
to traditional statistical methods, AI-based methods perform 
more productive and precise in undertaking big data tasks. 
Thanks to the application of open-source programming lan-
guage and relevant packages, such as Python (scikit-learn) 
and R (knn, naiveBayes, C5.0, etc.), it’s also convenient to 
start a machine learning project from data acquisition, data 
pre-processing to modeling.

AI-based approaches are also revolutionizing the food 
industries and helping solve complex problems. Though 
still in the early stage, many attempts have already been 
made with big data created by intelligent devices and 
sensors. Some food manufacturers of TFABs have coop-
erated with tech companies to uncover useful information 
from the production data and further improve the pro-
duction process for the development of popular products. 
It is the basic and most important function for AI appli-
cations to simulate human learning behavior and make 
decisions. A large number of reviews have already pro-
posed the possibility of applying ML methods in the 
development of TFABs (Chen et  al. 2021). A typical mod-
eling process (Figure 4) for ML could be broken in 5 
steps: data acquisition, data pre-processing, data modeling, 
model evaluation and model deployment. Problem com-
plexity, data quality and model selection play a crucial 
role in the final model performance. Up to now, the 
predictive power has been applied in TFABs in some way, 
mainly using prediction models with production data and 
consumer data to assist decision making.

The aim of AI-driven supply chain of TFABs is to link 
data assessment to the production and marketing process, 
and to help make decisions in a way that humans can under-
stand. The big data of TFABs are analyzed through AI-based 

methods to improve critical control points, including fer-
mentation process, environmental control, mixed bacteria 
system regulation, sensory evaluation, and so on. New 
AI-driven approach for TFABs (Figure 5) is expected to give 
rise to further in-depth exploration both in the academy 
and industry.

Process optimization

As previously mentioned, experience-based evaluation is a 
committed step for the flavor control and process optimi-
zation of traditional fermented food. Experienced staff reg-
ulated and controlled the production process by observing 
the changes in fermentation. However, decision fatigue and 
error are inevitable in human decision-making, which is a 
significant cause for the differences between batches. 
Computer vision is an important search field of AI that 
enables computers and robots to percept, recognize and 
interpret the real world through digital image or video. The 
application of computer vision systems to control the man-
ufacturing process has become increasingly popular in the 
food industry in recent years. Japanese sake brewery Nanbu 
Bijin has developed an AI tool to monitor the water absorp-
tion find the best time to drain water before steaming the 
rice through a huge number of production images. Asahi 
Shuzu and Fujitsu also launched trial of combining a math-
ematical model defining the process of sake brewing with 
machine learning that uses data obtained in the brewing of 
DASSAI. The final predictive AI model is expected to pro-
vide data to support an optimized sake brewing process. 
The application of AI-based approaches promotes progress 
in production techniques of TFABs. However, these appli-
cations are mainly regulated for a specific step in the fer-
mentation process. A comprehensive monitoring and 
regulation system are necessary to brew better TFABs.

It’s an important issue to improve the traditional brewing 
process to adapt large-scale industrialized production. With 
the dramatic drop in the costs data storage, it is cost-effective 
for food manufacturers to collect and store large-scale pro-
duction image data. The application of computer vision 
techniques not only facilitates the industrialization and 

Figure 4. T ypical ML modelling procedures.
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automation process of TFAB industries, but also improves 
the productivity and accuracy.

Product grading

Sensory evaluation refers to a scientific discipline that mea-
sures the human reactions to the characteristics of food as 
they are received by their sense (Lesschaeve 2007; Cejka 
and Olsovska 2015). Sensory properties are considered one 
of the most important factors that determine food quality, 
especially in TFABs that have a complex flavor composition. 
As mentioned above, while the results of manual sensory 
evaluation are easily to be affected by environment and 
emotion, data-driven sensory evaluation system is necessary 
to ensure product stability. One of the examples of AI appli-
cation is identifying liquor age. Many of the TFABs are 
highly-valued products and maturation has a marked influ-
ence on sensory qualities, as well as market values. Because 
of the wide application of blending techniques, it’s difficult 
to discriminate the quality or age of TFAB. Identification 
of age-markers is challenging because the complexity of 
flavor substances and exogenous compounds generated from 
the production process. Alibaba introduced ML method in 
adulterated wine discrimination and developed Jianzhen AI 
Maotai-discrimination box. From the data of image recog-
nition, weighing, optical scanning and other methods, the 
AI box identify the basic information and discriminate 
authenticity and vintage. Gonzalez Viejo et  al. (2016) devel-
oped a robust robotic beer pourer, RoboBEER, which ana-
lyze foamability, bubble size, alcohol content, temperature, 
carbon dioxide release and beer color to assess beer quality. 
The Artificial Neural Network technique used in RoboBEER 
for pattern recognition creates a classification model that 
achieves 92.4% accuracy in the classification according to 

quality and fermentation types. Besides physicochemical 
indexes, AI approaches can also take good use of other data 
to further visualize the sensory properties to consumers, 
not just a black-box classification model.

Customization marketing and production

With every day developing online shopping, intelligent rec-
ommendation system has become an important part for 
e-commerce (Gao, Liang, et  al. 2021; Senecal, Kalczynski, 
and Nantel 2005; Zeng et  al. 2019). As most people can 
only experience limited amount of TFABs, and they don’t 
have enough professional knowledge to judge quality of 
TFABs, personalized recommendation model has wide appli-
cation prospect. AI algorithms are applied to analyze the 
interactions with purchasers and provide proper products 
that will interest consumers. AI-based consumer analysis 
models are efficient dealing with unstructured interaction 
data and are helpful to discover the key deciding factors 
for most potential customers. AI models can make customer 
behavior predictions and integrate buyer personas to rec-
ommend suitable products. With the fast-growing quantity 
of interaction data, AI-based recommendation system is 
crucial for TFABs and other companies to search and filter 
useful information to the customers. The app Wine Ring 
offers one of the best personal wine selection experiences. 
It is the first to use AI-driven approaches to make wine 
recommendations based on individual preferences. The more 
wine you drink and rate, the more suitable wine AI could 
recommend. Another app for wine recommendation is 
Vivino, the world’s largest online wine marketplace 
(Mastroberardino et  al. 2019). Up to 2021, Vivino has a 
wine database of more than 12.5 million different wines, 
providing services for 50 million users. AI approaches help 

Figure 5.  ML-driven approach for research of TFABs.
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to push the boundaries of the traditional fermented food 
industry in the future.

The understanding of individual preferences through AI 
further enables TFAB manufacturers to realize personalized 
customization (Busse and Siebert 2018; Tonkin, 
Brimblecombe, and Wycherley 2017; Senecal, Kalczynski, 
and Nantel 2005). The widespread use of smart devices 
makes more information of personal preferences available 
to enterprises. Extensive researches on demand mining and 
the traditional fermented food industry have been taken to 
understand and meet consumers’ needs. British IntelligentX 
has put forward the world’s first beer that used AI algo-
rithms and ML methods to help adjust the recipes. 
IntelligentX created four different kinds of beer: Black AI, 
Golden AI, Pale AI, and Amber AI. By answering 10 ques-
tions associated with the products, IntelligentX collected 
feedback through Facebook and then improve the recipe. 
Charlottesville’s Champion Brewing company cooperated 
with a machine learning company Metis Machine to brew 
their new ML India Paleale (IPA). They provided parameters 
on the evaluation of 10 best-selling IPAs in the Great 
American Beer Festival, as well as 10 worst-selling IPAs, to 
create a popular IPA recipe. With existing recipes and inter-
action data collected from smart devices, AI-based methods 
show great ability to design popular recipes for TFABs. 
Though master wine tasters are still necessary to evaluate 
the product quality and decide the final recipe from 
AI-designed recipes, AI-based methods are proven to be a 
promising way to simplify the processes of new product 
development and personalize customized products.

Future prospect of potentials of AI-based methods 
in TFABs

Though AI-based methods have been applied in TFABs to 
some extent, there is a large potential for further develop-
ment on both theory and application. Current AI-based 
application and research focus on the datasets of production 
and consumer data. Multi-omics datasets allow a better 
understanding of complex microbial system and so becomes 
primary methods for research of TFABs (Bokulich et  al. 
2016; Mallick et  al. 2017). The combination of AI-based 
methods and multi-omics datasets is an effective way to 
optimize the fermentation process. In addition, applied stud-
ies are carried out more than theoretical studies. Actually, 
AI is an effective data mining method to reveal unknown 
phenomena and essence in the traditional fermentation pro-
cess. Explainable Artificial Intelligence (Samek, Wiegand, 
and Müller 2017; Linardatos, Papastefanopoulos, and 
Kotsiantis 2020; Samek, Wiegand, and Muller 2017) is a set 
of math techniques that help humans to fully understand 
the decision-making process of the model in safety-sensitive 
tasks, such as medicine and food. It provides a whole new 
perspective to explain the decision-making process and guar-
antee the security of AI-based methods used in TFABs. 
More importantly, applications mentioned above in TFABs 
are similar to those in other manufacturing industry. 
Rational use of AI-based methods according to the 

characteristics of TFABs helps to maximize the advantages 
of these long-lasting traditional foods.

Production regulation

Open fermentation or semi-open fermentation is a major 
characteristic of traditional fermentation (Zhou et  al. 2021; 
Wang et  al. 2022). Though part of keeping things sanitation 
is keeping the fermentation materials closed to the produc-
tion environment, some brewers insist on open fermentation. 
It’s believed that open fermentation promotes the formation 
of flavor substance. For these reasons, environmental control 
is necessary for ensure product quality. In general, several 
parameters have to be adjusted in the fermentation process, 
including temperature, time and humidity. However, the 
influence of environmental changes to TFABs cannot easily 
be quantified. A number of research have been done to 
explain the traditional fermentation process and bridge the 
flavor gap between craft products and mechanized products 
(Sanna and Pretti 2015), and powerful tools are developed 
to describe the traditional fermentation process in a scien-
tific way to help regulate the fermentation process, including 
predictive microbiology (Lopatkin and Collins 2020). It’s 
possible to apply AI-based methods to learn from the tra-
ditional fermentation process and regulate the industrialized 
fermentation process.

The growth in the number of connected devices that 
make up the Internet of Things (IoT) suggest that the envi-
ronmental data is more than ever before, making it possible 
to monitor and regulate the whole fermentation process 
(Ben-Daya, Hassini, and Bahroun 2019; Hansen and Bogh 
2021; Lu 2019; Zhang and Tao 2021). Instead of using IoT 
separately, AI algorithms can be integrated within connected 
devices to enable intelligent decision-making. IoT comple-
ments well with AI, and most IoT platforms (Azure, IBM, 
Splunk, AWS, and Google) make good use of AI for aided 
decision-making. AIoT, or AI + IOT, is the combination of 
AI and Internet of Things in practical application (Idoje, 
Dagiuklas, and Iqbal 2021; Zhang et  al. 2022). IoT devices 
generate huge amounts of data that AI approaches can take 
advantage of to analyze and track. Combining AI with IoT 
in this way can create “smart devices” that can make 
informed decisions without human intervention to realize 
the regulation of microbial communities. Integrating big 
data with predictive microbiology to build dynamic models 
of fermentation (Figure 6) will also yield meaningful returns. 
With smart food production line and environmental mon-
itoring system, AIoT is expected to bring benefits to TFAB 
industry in terms of efficiency and safety through environ-
ment regulation (Jagtap et  al. 2020).

Construction of starter culture

Due to the great contribution of microorganisms on fer-
mentation process, microbial analysis has been a research 
focus in TFABs (Zhang et  al. 2019; Zhou et  al. 2021). Driven 
by high-throughput sequencing techniques (Mardis 2008; 
Clarke et  al. 2009), genomics data grow exponentially in 
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volume, variety and complexity. The emergence of AI tech-
niques provides a new idea for data mining of 
high-throughput omics data in big data era. Quantitative 
Insights Into Microbial Ecology (QIIME) (Caporaso et  al. 
2010), a tool to explain the data generated by sequencing, 
was put into use in 2010, which marked the application of 
ML methods for microbiome analysis. Thanks to 
high-throughput sequencing techniques and ML methods, 
recent studies have revealed microbial diversity and structure 
in the traditional fermentation process. AI-based data min-
ing tools transfer vast amount of omics data to comprehen-
sible knowledge, which performs well in microbial analysis 
(Lim et  al. 2022; McElhinney et  al. 2022; Gao, Zeng, et  al. 
2021). Though ML methods have helped to analyze micro-
bial structure in the fermentation process and promoted the 
research of traditional fermented microbiome to some 
extent, the study of fermentation mechanism is insufficient. 
The analysis of microbial interaction and fermentation driv-
ing force has always been the key and difficult points of 
traditional fermented food research. Current statistics meth-
ods are difficult to realize real-time regulation of fermented 
microbiome. Explainable Artificial Intelligence helps to 
transfer multi-omics data to understandable knowledge. It 
is promising to apply ML methods to the analysis of 
multi-omics data generated during fermentation and to use 
Explainable Artificial Intelligence to analyze microbial inter-
actions and fermentation driving forces.

An important goal of microbial analysis in TFABs is to 
construct efficient starter culture (Wei et al. 2021). Traditional 
research methods optimize production techniques of starter 
culture or reconstruct fermented microbial community refer-
ring to functional analysis. Fermentation experiments that 
simulate real production environment are then conducted 
to evaluate fermentation performance. This microbial com-
munity construction method is usually local optimization, 
aiming at increasing or decreasing contents of specific 
metabolite (Du et  al. 2021). Further research is needed to 
construct efficient fermented microbial community and 
reveal the relation with metabolic profile through 
multi-objective optimization.

The ML-based analysis combined with metabolomics and 
metagenomics has already been done in the field of medi-
cine (Bar et  al. 2020), indicating the potential of AI to 
explain the microbial metabolism and to reconstruct micro-
bial community in TFABs. Comparing to gut microbiomes, 

the fermented microbial structure and metabolic composi-
tion is relatively simple. Thus, the modeling and analysis 
of gut microbiomes can be applied in a similar way to the 
study of fermentation microbial community and enables us 
to get better prediction and validation results. The driving 
forces of the fermentation system can be visualized based 
on the ML model with metagenomics and metabolomics. 
Then the core fermentation microbial community is estab-
lished according to feature attribute analysis brought by 
Explainable Artificial Intelligence. Data mining of core 
microbial community is carried out with metabolome to 
explain the mechanisms of traditional fermentation. These 
ML approaches shed light on the metabolic mechanisms of 
the core microbiome and help to develop efficient starter 
culture.

Sensomics and flavor network

The composition of flavor compounds is not equal to flavor 
characteristics (Jian et  al. 2021). Though flavor character-
istics have a notable influence on purchase tendency, the 
complex kinds and compositions of flavor compounds make 
it difficult to quantify flavor contribution. Traditional man-
ual sensory evaluation is subjective and difficultly recurred 
by assessors. However, it’s not easy to establish an objective 
data-driven evaluation method. Traditional statistical meth-
ods unable to process complex flavor information in time 
and realize global optimization.

Sensomics is considered to be the leading-edge science 
that molecularizes flavor entities (Vrzal and Olsovska 2019), 
thus has been applied to knowledge-based flavor optimiza-
tion and authentic flavor reconstruction in TFABs (Nicolotti, 
Mall, and Schieberle 2019; Sun et  al. 2022). There are appli-
cation prospects to combine sensomics with big data and 
AI technology to construct flavor network, explain flavor 
contribution, optimize flavor of existing products, predict 
popular flavor entities and develop novel products of TFABs.

Discussion

AI-based approaches provide an opportunity to optimize 
and automate the production and marketing processes of 
TFABs. In this review, a systematic effort has been made 
to detect the benefits and potentials of applying ML methods 

Figure 6. T raditional fermentation process and AIOT-driven automated production process.
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on research of TFABs. The study also proposes a framework 
for intelligent control fermentation system. It is observed 
that ML methods have been applied on production and 
marketing for decision support. Though these attempts are 
innovative in TFABs, similar applications can be found in 
other fields. Three potential applications that correspond to 
the characteristics of traditional fermentation process are 
suggested to develop distinctive products of TFABs. The 
vast volume of data created by multi-omics and IoT will be 
fully taken advantage of in these applications. Intelligent 
control of the fermentation process is one of the main goals 
for industrialization of TFABs, and at the same time the 
multi-omics analysis of metabolic mechanism and microbial 
interaction is one of the greatest challenges in the research 
of TFABs. This study has suggested AI approaches as solu-
tions to these issues. It is expected to give rise to further 
in-depth exploration toward a directed regulation strategy 
of the fermentation process through the employment of ML 
methods.

AI-based techniques are promising to be the most 
transformative data mining method for TFABs production 
chain due to the great predict ability and high efficiency 
in big data era. Though the applications and potentials 
mentioned above are encouraging, the employment of ML 
techniques should also be cautious for several reasons. 
The ML models are highly efficient in prediction, but it 
always takes a lot of time to provide more accurate results. 
Besides, the traditional fermentation production techniques 
are proven to be effective according to thousand years of 
experience, while the prediction results of ML methods 
are based on data, lacking scientific support. The uneven 
data quality may lead to false prediction and cause food 
safety problem. Up to now, AI-based methods should be 
regarded as decision aids for humans. It requires long-term 
monitoring and experiments to validate the security of 
ML methods.

To sum up, AI approaches could push the process of 
industrialization and automation of TFABs chain and guar-
antee the quality. Nevertheless, challenges exist in data qual-
ity, model explanation and shortage of AI talents. Despite 
the limitations, AI techniques should be regarded as an 
important tool for the development of traditional microbial 
resources and targeted regulation of traditional fermentation 
process in the future.
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